Oncogenic Kras-induced leukemogeneis: hematopoietic stem cells as the initial target and lineage-specific progenitors as the potential targets for final leukemic transformation.

نویسندگان

  • Jing Zhang
  • Jing Wang
  • Yangang Liu
  • Harwin Sidik
  • Ken H Young
  • Harvey F Lodish
  • Mark D Fleming
چکیده

KRAS is often mutated in human hematopoietic malignancies, including juvenile myelomonocytic leukemia (JMML) and T-cell lymphoblastic leukemia/lymphoma (TLL/L). However, the exact role and function of oncogenic KRAS mutations in the initiation and progression of JMML and TLL/L remain elusive. Here, we report the use of a mouse bone marrow transplantation model to study oncogenic Kras-induced leukemogenesis. We show that as the first genetic hit, oncogenic Kras mutations initiate both JMML and TLL/L, but with different efficiencies. Limiting dilution analyses indicated that an oncogenic Kras mutation alone is insufficient to produce frank malignancy. Instead, it cooperates with additional subsequent genetic event(s). Moreover, transplantation of highly purified hematopoietic stem cells (HSCs) and myeloid progenitors identified HSCs as the primary target for the oncogenic Kras mutation. Karyotypic analysis further indicated that secondary genetic hit(s) target lineage-specific progenitors rather than HSCs for terminal tumor transformation into leukemic stem cells. Thus, we propose the cellular mechanism underlying oncogenic Kras-induced leukemogenesis, with HSCs as the primary target by the oncogenic Kras mutations and lineage-committed progenitors as the final target for cancer stem cell transformation. Our model might be also applicable to other solid tumors harboring oncogenic Kras mutations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors

Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...

متن کامل

Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors

Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...

متن کامل

Oncogenic Kras Initiates Leukemia in Hematopoietic Stem Cells

How oncogenes modulate the self-renewal properties of cancer-initiating cells is incompletely understood. Activating KRAS and NRAS mutations are among the most common oncogenic lesions detected in human cancer, and occur in myeloproliferative disorders (MPDs) and leukemias. We investigated the effects of expressing oncogenic Kras(G12D) from its endogenous locus on the proliferation and tumor-in...

متن کامل

Isolation and Characterization of Human Induced Pluripotent Stem Cells-Derived Mesenchymal Progenitors

Purpose: Isolating human induced pluripotent stem cells (hiPS)-derived mesenchymal progenitors as a new source of mesenchymal cells which can differentiate into different lineages like adipose and bone. Materials and Methods: After 7 days of hiPS1 culture on matrigle coated dishes, spindle like cells around colonies were removed by cell scraper. These cells that had mesenchymal like morphology ...

متن کامل

Selective activation of STAT5 unveils its role in stem cell self-renewal in normal and leukemic hematopoiesis

Although the concept of a leukemic stem cell system has recently been well accepted, its nature and the underlying molecular mechanisms remain obscure. Constitutive activation of signal transducers and activators of transcription 3 (STAT3) and STAT5 is frequently detected in various hematopoietic tumors. To evaluate their role in normal and leukemic stem cells, we took advantage of constitutive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 113 6  شماره 

صفحات  -

تاریخ انتشار 2009